
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

WITH KERAS AND TENSORFLOW

AI FOR SCIENCE
A PRACTICAL INTRODUCTION
TO DEEP LEARNING

2
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

LEARNING GOALS

In couple of hours, we can only travel

so far

Main goal:

Become familiar with main ideas and

process

A starting point for solving your own

problems

3
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

AGENDA

Data

• US Naval Research Laboratory (NRL)

• 2000 to 2016

• ~30 minute interval

• Pacific and Atlantic

• Multiple geostationary satellites

• GOES, Himawari, MTSAT, etc…

• ~45,000 images

Source: https://www.nrlmry.navy.mil/tcdat/tc05/ATL/12L.KATRINA/ir/geo/1km/

LAB 1: CNNs AND KERAS LAB 2: TROPICAL CYCLONES LAB 3: CFD STEADY FLOWINTRO TO DL, PART 1

DL

Nice to
meet you!

IEEE TRANSACTIONS ON SPECIAL ISSUE ON COMPUTATIONAL IMAGING FOR EARTH SCIENCES, SEPTEMBER 2016 6

TABLE 4: Training, validation and test datasets

Hurricane Category Train Validation Test Total

H1 3314 1104 1816 6234
H2 1860 620 994 3474
H3 1848 616 992 3456
H4 1886 628 1032 3546
H5 603 201 306 1110
NC 126 42 54 222
TD 6363 2121 3576 12060
TS 9863 3288 5575 18726

Total 25863 8620 14345 48828

Fig. 5: Accuracy and loss plots in the training process

that instance. Moreover, this provides the intensity value
somewhat independent of the Dvorak technique [36] and
helps compare RMSE values of our HURDAT2 test dataset
with those of recon-only dataset.

We generated a mean image of images in our training
dataset. A ll training images were subtracted from themean
image. So basically we trained our network on the centered
(0-mean) raw RGB values of pixels [22]. This makes our
model more robust to the change of contrast in images.

Our network was trained on GRID K520 4GB GPU. It
took around 8 hours to complete 65 epochs of training.
We stopped training at around 90% validation accuracy to
prevent overfitting. Using GPU of 4GB memory restricted
the maximum size of networks that can be trained. There-
fore, we implemented a mini-batch system for training. A
single epoch of training involves running all mini-batches
to cover the training dataset. We trained our model using
caffe framework (in C++), which supports CUDA.

Figure 5 shows the graph of the validation accuracy, val-
idation loss, and training loss for each training iteration. As
thenumber of epochs increases, themodel learnsbetter.This
can be observed by the gradual increase in accuracy and
decrease in loss after each epoch. The slope of the accuracy
curve becomes close to 0 with a high epoch number. This
indicates convergence to the best model and it is a good
indicator of stopping training. Stepwise learning rate (↵) is
reduced by a factor of 10 in our study.

The model obtained at around 90% validation accuracy
was used for testing. We tested our model against the col-
lection of images from both the Atlantic and Pacific regions.
This will help us observe the generalizability of our model
to classify tropical cyclones from both regions. We analyzed
the top (top-1) and the second best (top-2) classification for
each image in the dataset. The probabilities from softmax
function are used in classification. The category is assigned
the TC class with the highest probability.

Fig. 6: Featuremapsgenerated from first convolutional layer of
our network

Fig. 7: Visualization for layers from convolution 3 to fully
connected 7

4.3 Visualization

Figure 6 displays the visualizations at the first convolution
layer using deep visualization toolbox [24]. Input image along
with the feature maps from the first convolution, normal-
ization and pooling are shown sequentially. Each filter pro-
duces a different map. The 7t h feature map is presented
by zooming. Activated images from the first convolution
are easy to interpret. Visualizations for other higher layers
are displayed in Figure 7. It is hard to analyze the cause of
activations in those featuremaps.

113t h and 39t h feature maps generated from conv2 are
shown in Figure 8. Feature map 39 is activated with the
upper curvature of hurricane structure whereas feature map

113 is activated with the overall curved shape of the input
hurricane image. This shows that each feature map learns
different structures and features from the same input.

Synthetic imagesof activation mapsgenerated using deep

visualization toolbox [24] are shown in Figure 9 to visualize
high activation as a result of regularized optimization. Each
image corresponds to a unit representing a category in the
fc8 layer. Circular motion for categories of H1, H2, and H3,
and random structure for NC, TD, and TS can be observed.
Synthetic H4 and H5 images have smooth texture with the
prominent eye of hurricane located nearly at the center.

4
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

DEEP LEARNING ANALOGIES
What is this deep learning thing, anyway?

A NEW TYPE OF SOFTWARE A GENERALIZATION OF CURVE FITTING

5
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

A NEW WAY TO BUILD SOFTWARE

Traditional Programming vs Machine Learning

SOFTWARE 1.0:
Traditional Programming

Programmer
Task

Expert
Knowledge

Human
Readable
Function

Optimizer

SOFTWARE 2.0:
Machine Learning

Adam

Tons of
Examples

Machine
Learning
Function

6
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

A DIFFERENT WAY TO BUILD SOFTWARE

Traditional Programming vs Machine Learning

Optimizer

SOFTWARE 2.0:
Machine Learning

Tons of
Examples

Machine
Learning
Function

Adam

Goals for today:

1. Learn to use this new approach

2. Revolutionize Science

7
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

A DIFFERENT WAY TO BUILD SOFTWARE
Hand written vs learnt functions

TEMP, PRESSURE, MOISTURE

PROBABILITY OF RAIN

FUNCTION 1

FUNCTION 2

FUNCTION 3

FUNCTION 5

FUNCTION 4

Function1(T,P,Q)

return y

HAND-WRITTEN FUNCTION

Convert expert
knowledge into a function

Function1(T,P,Q)

update_mass()

update_momentum()

update_energy()

do_macrophysics()

do_microphysics()

y = get_precipitation()

return y

LEARNED FUNCTION

Reverse-engineer a function
from inputs / outputs

Function1(T,P,Q)

return y

Function1(T,P,Q)

A = relu(w1 * [T,P,Q] + b1)

B = relu(w2 * A + b2)

C = relu(w3 * B + b3)

D = relu(w4 * C + b4)

E = relu(w5 * D + b5)

y = sigmoid(w6 * E + b6)

return y

8
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

A DIFFERENT WAY TO BUILD SOFTWARE
The two approaches are complimentary

MANUAL
PROGRAMMING

“SOFTWARE 1.0”
ENGINEERED

LABOR INTENSIVE
EXPLICIT

EXPLAINABLE
SIMPLE

FROM EXPERTISE

MACHINE LEARNING

“SOFTWARE 2.0”
REVERSE-ENGINEERED
AUTOMATIC
IMPLICIT
SUBTLE
COMPLEX
FROM EXAMPLES

(For best results, combine as needed)

9
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

A DIFFERENT WAY TO BUILD SOFTWARE
Complex phenomena are best described implicitly.

EXAMPLE: ATMOSPHERIC RIVER- 3 -

Characterizing Extreme Weather

in a Changing Climate

10
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

A GENERALIZATION OF CURVE FITTING
Curve fitting provides the starting intution

x

y

y=f(x)

11
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

𝒇(𝒙)

𝒙1

𝒙2

𝒙3

𝒙4

𝒙5

𝒙6

inputs

𝒚𝟏

𝒚𝟐

𝒚𝟑

𝒚𝟒

𝒚𝟓

𝒚𝟔

outputs

0

0

0

0

0

1

1

1

1

1

High dimensional x,y
Hierarchical
Millions of parameters

Supervised
Deep

Learning

Find 𝒇, given 𝒙 and 𝒚

𝒙 𝒚

A GENERALIZATION OF CURVE FITTING
Differences from traditional curve fitting

18
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

IMPLEMENTATION BASICS

19
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

AUTO-ML
Eventually, the optimizer might be able to do everything for you

20
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

WHAT YOU NEED TO MAKE DEEP LEARNING WORK
You need three main ingredients (and some skill)

LARGE QUANTITIES OF DATA ML FRAMEWORK GPU ACCELERATOR

KERAS + TENSFORFLOW

21
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

DEEP LEARNING FRAMEWORKS
Many frameworks to choose from (but not for Fortran)

JuliaC++

z

Python

22
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

DEVELOPMENT ENVIRONMENT
JUPYTER NOTEBOOKS

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

23
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

NVIDIA GPU CLOUD REGISTRY
CONTAINERIZED SOFTWARE

Singularity
DEEP

LEARNING
HPC
APPS

HPC
VISUALIZATION

24
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

LINEAR REGRESSION
With Scikit Learn

c

25
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

LINEAR REGRESSION
With TensorFlow and Keras

c

26
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

TRAINING

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

27
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

TRAINING VS INFERENCE

TRAINING PHASE

SEARCH FOR THE RIGHT PIECES

INFERENCE PHASE

APPLY THE COMPLETED MODEL

ONLINE
LEARNING

28
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

TRAINING: THE PLAYERS
DATA, MODEL, LOSS, AND OPTIMIZER

DATA

LOSS FCN

OPTIMIZER

MODEL

29
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

TRAINING: GRADIENT DESCENT
Finding as solution is as easy as falling down a hill

Start with
random weights

Compute the gradient
and follow it downhill

Stop when
the error is small

30
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPTIMIZERS
Many variations on stochastic gradient descent

TRAINING: BACKPROPAGATION
Compute the gradient, by efficiently assigning blame

Prediction

Error

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

32
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

AUTOGRAD
Let a framework keep track of your gradient, so you don’t have to

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

33
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

EXPERT SYSTEMS

EXECUTE HAND-WRITTEN ALGORITHMS AT HIGH SPEED

LEARNS BOTH OUTPUT AND FEATURES FROM DATA

EXPERT SYSTEMS

EXECUTE HAND-WRITTEN ALGORITHMS AT HIGH SPEED

TRADITIONAL ML
LEARN FROM EXAMPLES USING HAND-CRAFTED
FEATURES

EXPERT SYSTEMS

EXECUTE HAND-WRITTEN ALGORITHMS AT HIGH SPEED
EXPERT SYSTEMS

EXECUTE HAND-WRITTEN ALGORITHMS AT HIGH SPEED

TRADITIONAL ML
LEARN FROM EXAMPLES USING HAND-CRAFTED
FEATURES

AI, MACHINE LEARNING, DEEP LEARNING

EXPERT SYSTEMS

EXECUTE HAND-WRITTEN ALGORITHMS AT HIGH SPEED
EXPERT SYSTEMS

EXECUTE HAND-WRITTEN ALGORITHMS AT HIGH SPEED

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

34
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

DEEP LEARNING VS. MACHINE LEARNING
When should I use deep learning vs traditional machine learning?

TRADITIONAL MACHINE LEARNING
Random forests, SVM, K-means, Logistic Regression
Features hand-crafted by experts
Small set of features: 10s or 100s
NVIDIA RAPIDS: orders of magnitude speedup

SUPERVISED DEEP LEARNING
CNN, RNN, LSTM, GAN, Variational Auto-encoders
Finds features automatically
High dimensional data: images, sounds, speech
Large set of labelled data (10k+ examples)
NVIDIA CU-DNN: accelerates DL frameworks

ARTIFICIAL NEURONS
Simple equations with adjustable parameters

Biological neuron

w1 w2 w3

x1 x2
x3

y

𝒚 = 𝒇(𝒘𝟏𝒙𝟏 +𝒘𝟐𝒙𝟐 +𝒘𝟑𝒙𝟑)

Artificial neuron

https://towardsdatascience.com/the-differences-between-artificial-and-biological-neural-networks-a8b46db828b7

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

https://towardsdatascience.com/the-differences-between-artificial-and-biological-neural-networks-a8b46db828b7

36
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CURVE FIT WITH SINGLE LAYER NEURAL NETWORK

c

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

37
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

DATA SPLITTING
KEEP TEST, TRAINING, AND VALIDATION DATA SEPERATE

Data

Train Validation Test

For model training For hyperparameter tuning For final evaluation

38
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PLOTTING TRAINING AND VALIDATION LOSS

39
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

VISUALIZATION TOOLS: TENSORBOARD

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

40
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MODEL CAPACITY
AND REGULARIZATION

41
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MODEL CAPACITY
A good model is one that generalizes to new data

UNDERFIT GOOD FIT OVER FIT

GOOD-FIT

Checking for Generalization

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OVER-FITTING

Captures training data, but generalizes poorly

Use more data points

Reduce model capacity

UNDER-FITTING

Model is too simple to fit the curve

Increase model capacity

Use a different model

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

45
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

REGULARIZATION
Early Stopping and Layer Regularization

46
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

REGULARIZATION
BatchNorm and Dropout

47
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CHALLENGES AND
POTENTIAL SOLUTIONS

48
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

LABELLING LARGE QUANTITIES OF DATA
How can we overcome the need for manual labelling?

Self-Supervised Learning
Predicting input B from input A

Human-in-the-loop
Using human machine iteration to

make labelling easier

Data Fusion
Using one data source

as the label for another

Reinforcement Learning
Obtaining labels directly from the

environment or simulation

49
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

TRANSFER LEARNING: DON’T START FROM SCRATCH

Train on simulated or related data Fine-tune on the real data

50
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

ENFORCING PHYSICAL CONSTRAINTS

Conservation of Mass, Momentum, Energy, Incompressibility,
Turbulent Energy Spectra, Translational Invariance

Lagrange multipliers (penalization), Hard Constraints,
Projective Methods, Differentiable Programming

51
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

INTERPRETABILITY: EXPLAINABLE AI

https://lrpserver.hhi.fraunhofer.de/image-classification

Layer-wise Relevance Propagation

52
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

USING YOUR GPU

53
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

EXPLODING DATASETS
Logarithmic relationship between the dataset size and accuracy

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409.

54
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

THE SCALING LAWS
As you increase the dataset size you must increase the model size

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei,

D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.

GPUS MAKE MACHINE LEARNING PRACTICAL
Train in a day, or a month?

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

56
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

GPU Accelerator
Optimized for
Parallel Tasks

ACCELERATED COMPUTING

57
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PILLARS OF DATA SCIENCE PERFORMANCE

CUDA Architecture NVLink/NVSwitch CUDA-X AI

Massively Parallel Processing High Speed Connecting between
GPUs for Distributed Algorithms

NVIDIA GPU Acceleration Libraries
for Data Science and AI

NVSwitch

6x
NVLink

CUDA-X

PYTHON

APACHE ARROW on GPU Memory

D
A
S
K

cuDNN

RAPIDS

cuGraphcuMLcuDF

DL

FRAMEWORKS

58
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PILLARS OF DATA SCIENCE PERFORMANCE

CUDA Architecture NVLink/NVSwitch CUDA-X AI

Massively Parallel Processing High Speed Connecting between
GPUs for Distributed Algorithms

NVIDIA GPU Acceleration Libraries
for Data Science and AI

NVSwitch

6x
NVLink

CUDA-X

PYTHON

APACHE ARROW on GPU Memory

D
A
S
K

cuDNN

RAPIDS

cuGraphcuMLcuDF

DL

FRAMEWORKS

59
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

TENSOR CORES FOR DIFFERENT NEEDS

➢ No Code Change Speed-up for Training

FP32

TENSOR FLOAT 32 (TF32)

FP16

BFLOAT16

8 BITS 23 BITS

8 BITS 10 BITS

5 BITS 10 BITS

8 BITS 7 BITS

Range PrecisionSign

TF32 Range

TF32 Precision

60
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PILLARS OF DATA SCIENCE PERFORMANCE

CUDA Architecture NVLink/NVSwitch CUDA-X AI

Massively Parallel Processing High Speed Connecting between
GPUs for Distributed Algorithms

NVIDIA GPU Acceleration Libraries
for Data Science and AI

NVSwitch

6x
NVLink

CUDA-X

PYTHON

APACHE ARROW on GPU Memory

D
A
S
K

cuDNN

RAPIDS

cuGraphcuMLcuDF

DL

FRAMEWORKS

61
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PILLARS OF DATA SCIENCE PERFORMANCE

CUDA Architecture NVLink/NVSwitch CUDA-X AI

Massively Parallel Processing High Speed Connecting between
GPUs for Distributed Algorithms

NVIDIA GPU Acceleration Libraries
for Data Science and AI

NVSwitch

6x
NVLink

CUDA-X

PYTHON

APACHE ARROW on GPU Memory

D
A
S
K

cuDNN

RAPIDS

cuGraphcuMLcuDF

DL

FRAMEWORKS

62
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

LEARNED FUNCTIONS ARE GPU ACCELERATED
Next level software. No porting required.

DATA GPU ACCELERATED
FUNCTIONS

63
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CONVOLUTION OPERATION

Pointwise multiply and sum, scalar
output

Input Image Input Filter Intermediate output Final Output

𝑖𝑛𝑡[𝑝, 𝑞] = ෍

𝑖,𝑗 ϵ 𝑓𝑖𝑙𝑡𝑒𝑟

𝐼𝑚 𝑖𝑠𝑡𝑎𝑟𝑡 + 𝑖, 𝑗𝑠𝑡𝑎𝑟𝑡 + 𝑗 . 𝐹𝑖𝑙𝑡[𝑖, 𝑗]𝑖𝑛𝑡[𝑐, 𝑝, 𝑞] = ෍

𝑖,𝑗 ϵ 𝑓𝑖𝑙𝑡𝑒𝑟

𝐼𝑚[𝑐] 𝑖𝑠𝑡𝑎𝑟𝑡 + 𝑖, 𝑗𝑠𝑡𝑎𝑟𝑡 + 𝑗 . 𝐹𝑖𝑙𝑡[𝑐][𝑖, 𝑗]

𝑜𝑢𝑡𝑝𝑢𝑡 𝑝, 𝑞 =෍

𝑐

𝑖𝑛𝑡[𝑐, 𝑝, 𝑞]

Why do it once if you can do it n times ? Batch the whole thing.

65
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

VERIFYING YOUR GPU

TensorFlow

Keras

PyTorch

Julia

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

66
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

TRAINING ON
A SINGLE GPU

Keras

PyTorch

Julia

Automatically uses GPU if available

67
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

NVIDIA-SMI
System Management Interface

Processor
Utilization

Memory
Utilizaiton

Process
Info

68
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

FULLY CONNECTED
NETWORKS

(MULTI-LAYER PERCPTRONS)

FULLY CONNECTED NETWORKS

A given neuron is connected to every neuron in the previous layer

INPUT OUTPUTLAYER1 LAYER 2

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

70
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

ACTIVATION FUNCTIONS
Many to choose from. But most use ReLU or LeakyReLU

71
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RELU BASIS FUNCTIONS

Piecewise continuous basis functions

(Pytorch Code)

72
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MULTI-LAYER NETWORKS

Piecewise continuous basis functions

73
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

DEEPER NEURAL NETWORKS

More layers allows for more levels of abstraction

Input Result

Input Low-level features Mid-level features High-level features

https://web.eecs.umich.edu/~honglak/icml09-ConvolutionalDeepBeliefNetworks.pdf

Probability

Image is

A Face

Output

74
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

Large Scale Visual Recognition Challenge 2012

The Imagenet competition: Automatically classify images from 1000 different categories

75
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CONVOLUTIONAL NEURAL
NETWORKS

76
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

WHAT ARE CNNS USED FOR?
Problems with translational invariance

Computational Physics
Invariance in 3d space

Audio and Time Series
Invariance in time

Computer Vision
Invariance in 2d space

77
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

COMPUTER VISION TASKS

Each task requires a different model and data setup

Image Credit: NERSC

78
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CLASSIFICATION

Example: Classifying Land Use

UC Merced Land Use Database

79
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

ONE-HOT ENCODING

Input: Pixels, Output: One-hot encoding

https://blog.carbonteq.com/practical-image-recognition-with-tensorflow/

OUTPUT: ONE-HOT VECTOR
INPUT:PIXEL VALUES

Hot! Not so hotNot so hot

80
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

IMAGES ARE POINTS, WITH MANY DIMENSIONS

1

2

3

4

5

IN: 3-D Vector OUT: 1 hot vector IN: 784-D Vector OUT: 1-hot vector

1

2

3

4

5

6

0

81
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

FULLY CONNECTED NETWORKS AND IMAGES DON’T MIX

FLATTEN 1 Million
Pixels

1 Million
neurons

82
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

TRANSLATIONAL EQUIVARIANCE

Objects in nature look the same from place to place

83
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

1

2

2

1

1

1

0

1

2

2

2

1

1

0

1

2

2

2

1

1

0

0

1

1

1

1

1

0

0

0

0

0

0

0

4

0

0

0

0

0

0

0

-4

1

0

-8

Source

Pixel

Convolutional kernel

(Feature Detector)

New pixel value

(destination pixel)

Center element of the kernel is placed over

the source pixel. The source pixel is then

replaced with a weighted sum of itself and

nearby pixels.

WHAT IS A CONVOLUTION?
A small matrix transformation, applied at each point of the image

84
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CONVOLUTION EXAMPLE: SOBEL FILTER

𝐺𝑥 =
−1 0 1
−2 0 2
−1 0 1

𝐺𝑦 =
−1 −2 −1
0 0 0
1 2 1

𝐺 = 𝐺𝑥
2 + 𝐺𝑦

2

Image source: https://en.wikipedia.org/wiki/Sobel_operator

85
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CONVOLUTION EXAMPLE: SOBEL FILTER

𝐺𝑥 =
−1 0 1
−2 0 2
−1 0 1

𝐺𝑦 =
−1 −2 −1
0 0 0
1 2 1

𝐺 = 𝐺𝑥
2 + 𝐺𝑦

2

Image source: https://en.wikipedia.org/wiki/Sobel_operator

86
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CLASSIFICATION

87
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CLASSIFIER EVOLUTION OVER TIME

1998 2014 2016 2019

2012 2015 2017

LeNet VGG and Inception Xception DenseNet

AlexNet ResNet ResNext-50

https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d

https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d

88
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

LENET-5

(1988) Yann LeCun. Hand written recognition. 60k parameters.

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection

Full connection

Gaussian connections

OUTPUT
 10

https://en.wikipedia.org/wiki/LeNet.

https://en.wikipedia.org/wiki/LeNet

89
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

IMAGENET ILSVR COMPETITION

Large Scale Visual Recognition Competition (2010-2017)

https://en.wikipedia.org/wiki/ImageNet

https://en.wikipedia.org/wiki/ImageNet

90
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

ALEXNET

(2012): Krizevsky, Sutskever, Hinton. ImageNet winner.

https://en.wikipedia.org/wiki/AlexNet

91
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

VGG-16

2014. ImageNet runner up. Simple, clean architecture.

ar
X

iv
:1

4
0

9
.1

5
5

6
v

6

[c
s.

C
V

]
 1

0
 A

p
r

2
0

1
5

Published as a conference paper at ICLR 2015

VERY DEEP CONVOLUTIONAL NETWORKS

FOR LARGE-SCALE IMAGE RECOGNITION

Karen Simonyan∗ & Andrew Zisserman+

Visual Geometry Group, Department of Engineering Science, University of Oxford
{karen,az}@robots.ox.ac.uk

ABSTRACT

In this work we investigate the effect of the convolutional network depth on its
accuracy in the large-scale image recognition setting. Our main contribution is
a thorough evaluation of networks of increasing depth using an architecture with
very small (3×3) convolution filters, which shows that a significant improvement
on the prior-art configurations can be achieved by pushing the depth to 16–19
weight layers. These findings were the basis of our ImageNet Challenge 2014
submission, where our team secured the first and the second places in the localisa-
tion and classification tracks respectively. We also show that our representations
generalise well to other datasets, where they achieve state-of-the-art results. We
have made our two best-performing ConvNet models publicly available to facili-
tate further research on the use of deep visual representations in computer vision.

1 INTRODUCTION

Convolutional networks (ConvNets) have recently enjoyed a great success in large-scale im-
age and video recognition (Krizhevsky et al., 2012; Zeiler & Fergus, 2013; Sermanet et al., 2014;
Simonyan & Zisserman, 2014) which has become possible due to the large public image reposito-
ries, such as ImageNet (Deng et al., 2009), and high-performance computing systems, such as GPUs
or large-scale distributed clusters (Dean et al., 2012). In particular, an important role in the advance
of deep visual recognition architectures has been played by the ImageNet Large-Scale Visual Recog-
nition Challenge (ILSVRC) (Russakovsky et al., 2014), which has served as a testbed for a few
generations of large-scale image classification systems, from high-dimensional shallow feature en-
codings (Perronnin et al., 2010) (the winner of ILSVRC-2011) to deep ConvNets (Krizhevsky et al.,
2012) (the winner of ILSVRC-2012).

With ConvNets becoming more of a commodity in the computer vision field, a number of at-
tempts have been made to improve the original architecture of Krizhevsky et al. (2012) in a
bid to achieve better accuracy. For instance, the best-performing submissions to the ILSVRC-
2013 (Zeiler & Fergus, 2013; Sermanet et al., 2014) utilised smaller receptive window size and
smaller stride of the first convolutional layer. Another line of improvements dealt with training
and testing the networks densely over the whole image and over multiple scales (Sermanet et al.,
2014; Howard, 2014). In this paper, we address another important aspect of ConvNet architecture
design – its depth. To this end, we fix other parameters of the architecture, and steadily increase the
depth of the network by adding more convolutional layers, which is feasible due to the use of very
small (3×3) convolution filters in all layers.

As a result, we come up with significantly more accurate ConvNet architectures, which not only
achieve the state-of-the-art accuracy on ILSVRC classification and localisation tasks, but are also
applicable to other image recognition datasets, where they achieve excellent performance even when
used as a part of a relatively simple pipelines (e.g. deep features classified by a linear SVM without
fine-tuning). We have released our two best-performing models1 to facilitate further research.

The rest of the paper is organised as follows. In Sect. 2, we describe our ConvNet configurations.
The details of the image classification training and evaluation are then presented in Sect. 3, and the

∗ current affiliation: Google DeepMind +current affiliation: University of Oxford and Google DeepMind
1
http://www.robots.ox.ac.uk/˜vgg/research/very_deep/

1

92
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

INCEPTION-V1 (GOOGLENET)

2014. Train different size convolutions in parallel

94
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RESNETS

95
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MODELING TRENDS: DEEPER AND LARGER

1998 2014 2016 2019

2012 2015 2017

LeNet
5 Layers,

60 k Params

VGG-16
16 Layers

138 M Params
Xception DenseNet

AlexNet
8 layers

60 M Params

ResNet
50 Layers

23 M Params
ResNext-50

Source: Source information is 14 pt, italic

96
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PROBLEM: VANISHING GRADIENTS

Error signal decays exponentially as it propagates backward through the network

DEEPER NETWORKS WERE HARDER TO TRAINERROR SIGNAL VANISHES DURING BACKPROP

https://www.arxiv-vanity.com/papers/1512.03385/

97
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RESNETS AND SKIP CONNECTIONS

(aka Highway Networks)

https://arxiv.org/abs/1712.09913

https://jithinjk.github.io/blog/nn_loss_visualized.md.html

ADD THE INPUT TO OUTPUT DRAMTICALLY SIMPLIFIES THE LOSS LANDSCAPE

https://arxiv.org/pdf/1512.03385.pdf

https://jithinjk.github.io/blog/nn_loss_visualized.md.html

98
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RESNET-50

2015 Microsoft Research. 50 Layers, 23M params.

https://arxiv.org/pdf/1409.1556.pdf

99
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

DENSENET

2017

https://arxiv.org/abs/1608.06993

100
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

LAB PART 1
CNN AND KERAS 101

Data

• US Naval Research Laboratory (NRL)

• 2000 to 2016

• ~30 minute interval

• Pacific and Atlantic

• Multiple geostationary satellites

• GOES, Himawari, MTSAT, etc…

• ~45,000 images

Source: https://www.nrlmry.navy.mil/tcdat/tc05/ATL/12L.KATRINA/ir/geo/1km/

LAB 1: CNNs AND KERAS LAB 2: TROPICAL CYCLONES LAB 3: CFD STEADY FLOW

INTRO TO DL, PART 1

DL

Nice to
meet you!

IEEE TRANSACTIONS ON SPECIAL ISSUE ON COMPUTATIONAL IMAGING FOR EARTH SCIENCES, SEPTEMBER 2016 6

TABLE 4: Training, validation and test datasets

Hurricane Category Train Validation Test Total

H1 3314 1104 1816 6234
H2 1860 620 994 3474
H3 1848 616 992 3456
H4 1886 628 1032 3546
H5 603 201 306 1110
NC 126 42 54 222
TD 6363 2121 3576 12060
TS 9863 3288 5575 18726

Total 25863 8620 14345 48828

Fig. 5: Accuracy and loss plots in the training process

that instance. Moreover, this provides the intensity value
somewhat independent of the Dvorak technique [36] and
helps compare RMSE values of our HURDAT2 test dataset
with those of recon-only dataset.

We generated a mean image of images in our training
dataset. A ll training images were subtracted from themean
image. So basically we trained our network on the centered
(0-mean) raw RGB values of pixels [22]. This makes our
model more robust to the change of contrast in images.

Our network was trained on GRID K520 4GB GPU. It
took around 8 hours to complete 65 epochs of training.
We stopped training at around 90% validation accuracy to
prevent overfitting. Using GPU of 4GB memory restricted
the maximum size of networks that can be trained. There-
fore, we implemented a mini-batch system for training. A
single epoch of training involves running all mini-batches
to cover the training dataset. We trained our model using
caffe framework (in C++), which supports CUDA.

Figure 5 shows the graph of the validation accuracy, val-
idation loss, and training loss for each training iteration. As
thenumber of epochs increases, themodel learnsbetter.This
can be observed by the gradual increase in accuracy and
decrease in loss after each epoch. The slope of the accuracy
curve becomes close to 0 with a high epoch number. This
indicates convergence to the best model and it is a good
indicator of stopping training. Stepwise learning rate (↵) is
reduced by a factor of 10 in our study.

The model obtained at around 90% validation accuracy
was used for testing. We tested our model against the col-
lection of images from both the Atlantic and Pacific regions.
This will help us observe the generalizability of our model
to classify tropical cyclones from both regions. We analyzed
the top (top-1) and the second best (top-2) classification for
each image in the dataset. The probabilities from softmax
function are used in classification. The category is assigned
the TC class with the highest probability.

Fig. 6: Featuremapsgenerated from first convolutional layer of
our network

Fig. 7: Visualization for layers from convolution 3 to fully
connected 7

4.3 Visualization

Figure 6 displays the visualizations at the first convolution
layer using deep visualization toolbox [24]. Input image along
with the feature maps from the first convolution, normal-
ization and pooling are shown sequentially. Each filter pro-
duces a different map. The 7t h feature map is presented
by zooming. Activated images from the first convolution
are easy to interpret. Visualizations for other higher layers
are displayed in Figure 7. It is hard to analyze the cause of
activations in those featuremaps.

113t h and 39t h feature maps generated from conv2 are
shown in Figure 8. Feature map 39 is activated with the
upper curvature of hurricane structure whereas feature map

113 is activated with the overall curved shape of the input
hurricane image. This shows that each feature map learns
different structures and features from the same input.

Synthetic imagesof activation mapsgenerated using deep

visualization toolbox [24] are shown in Figure 9 to visualize
high activation as a result of regularized optimization. Each
image corresponds to a unit representing a category in the
fc8 layer. Circular motion for categories of H1, H2, and H3,
and random structure for NC, TD, and TS can be observed.
Synthetic H4 and H5 images have smooth texture with the
prominent eye of hurricane located nearly at the center.

INTRO TO DL, PART 2

DL

That was
exhausting!

101
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MNIST
The standard ‘hello world’ problem for deep learning

102
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MNIST
Keras implementation

103
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

FASHION MNIST
A slightly more interesting version of MNIST

104
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

6 STEPS APPROACH

Data Task Model

LossLearningEvaluation

105
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

LAUNCH CNN PRIMER AND KERAS 101
12:30-1:00 ET

Step through the primer on your own (shift + enter on each cell)

Shutdown the kernel before clicking on “Next Notebook” to free up the GPU memory

106
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

FORGOT TO SHUTDOWN YOUR KERNELS?
Don’t worry, you can fix it.

c

c

Go to Home Tab, Click Running Tab, Kill notebooks you aren’t using Restart & Clear Output on the Kernel you are using

c

c

c

107
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

LEVELS OF AI ENGAGEMENT

LEVEL 3LEVEL 2LEVEL 1

AI takes over parts
of the main
production system

LEVEL 5LEVEL 4

AI replaces
significant parts
of the main
system, classical
parts play
supporting role

Data

Analytics

Numerical

Simulation

Signal Processing

Visualization

…

The system is
designed with AI
in mind from the
start; classical
algorithms
generate training
data

AI and main
production system
influence each
other but are
largely stand-
alone

AI in a supporting
role, but
decoupled from
main production
system

108
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

COMPUTATIONAL
SCIENCES

Mathematical

Model, First

Principles

Inputs Outputs

Efficient

Implementation
Inputs Outputs

Create

Some Level of
Approximation

Create

Similarities to the shift
Feature → Network Engineering?

NNs as a Porting Strategy?

109
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CAN THIS WORK ∀? ABOLUTELY, YES!
Proof: Universal Approximation Theorem

𝛽 ∗

𝛼 ∗

Take many non-
linearities

Combine to form peaks
(one hidden layer is enough!)

And assemble your
arbitrary function
with arbitrary 𝜀Problem: this is an essentially useless

theorem for practical purposes

110
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

WILL THIS WORK ∀?

• Anecdotal Evidence: ∃ scientific cases where NNs seem to do work extremely well

• Save bet: it will not work for ∀

• Therefore, by induction (sort of):

• There exists ∃ a subspace in ∀ HPC applications, for which AI works well

• Need to explore the size and shape of this subspace

• Currently I think it is fair to say we don’t understand this domain very well

• But: Each individual case promising 10x, 100x,1000x performance
improvement is probably worth exploring; those can be groundbreaking!

Considering pesky practical constraints, like memory and performance

111
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

WHAT MAKES
AI * HPC SPECIAL?

Mathematical

Model
Inputs Outputs

Efficient

Implementation
Inputs Outputs

Create

Some Level of
Approximation

Create

112
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

HOW TO FILL IN THE ?

Experience,
Intuition, and Art

+ Tools Support

E.g. Adversarial Fuzzing

New Approaches

E.g. Physics Informed
Networks?1),

ODE Networks?2)

Guided Design

E.g. Declarative Building
Blocks to NN Translation

1) Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework, M. Raissi et al.
2) Neural Ordinary Differential Equations, R.T.Q. Chen et al.

timestep

Tridiagonal solve

Advection Step

Halo Exchange

Pressure Projection

113
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

Barriers to acceptance of deep learning as a tool for science

• Interpretability: Can I understand what the neural-net is doing?

• Robustness: Will it always give me the right answer?

• Coverage: How much training data do I need?

• Convergence: How can I ensure that training will converge?

• Uncertainty: How certain can I be of the answers?

SCIENTIFIC CHALLENGES

114
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

ESTIMATING TROPICAL CYCLONE INTENSITY
Paper OverviewIEEE TRANSACTIONS ON SPECIAL ISSUE ON COMPUTATIONAL IMAGING FOR EARTH SCIENCES, SEPTEMBER 2016 1

Tropical Cyclone Intensity Estimation
Using a Deep Convolutional Neural Network
Ritesh Pradhan, Ramazan Aygun, Senior Member, IEEE, Manil Maskey,Member, IEEE, Rahul

Ramachandran, Senior Member, IEEE, and Daniel Cecil

Abstract—Tropical cyclone intensity estimation is a challenging task as it required domain knowledge while extracting features,

significant pre-processing, various sets of parameters obtained from satellites, and human intervention for analysis. The inconsistency

of results, significant pre-processing of data, complexity of the problem domain, and problems on generalizability are some of the

issues related to intensity estimation. In this study, we design a deep convolutional neural network architecture for categorizing

hurricanes based on intensity using Graphics Processing Unit (GPU). Our model has achieved better accuracy and lower

root-mean-square error by just using satellite images than ’state-of-the-art’ techniques. Visualizations of learned features at various

layers and their deconvolutions are also presented for understanding the learning process.

Index Terms—Deep Learning, Image processing, Convolutional Neural Networks, Tropical Cyclone Category and Intensity Estimation

F

1 INTRODUCTION

D EEP learning uses a deep architecture of multiple
processing layers composed of linear or nonlinear

transformations [1], [2], [3], [4], [5], [6] while replacing
handcrafted features with automated feature learning and
hierarchical feature extraction [7]. Convolutional Neural
Networks (CNNs) can be used to model spatial correlation
with translation invariance making them suitable for image
recognition [8], [9]. This study proposes a deep CNN ar-
chitecture for estimating the hurricane1 intensity by learning
features.

1.1 Motivation

Since hurricanes (or tropical cyclones) possess substantial
threatsand causesignificant damage to livesand properties,
studying the stagesof a hurricane is important to determine
its impact. From a scientific perspective, determining an
accurate TC intensity helps i) better initialization in forecast
models, leading tomoreaccurate forecasts, ii) moreaccurate
historical records of TCs, especially if a technique can be
consistently applied to older satellite imagery (i.e., intensity
reanalysis), and iii) providing consistent intensity estimates
as current intensity estimates are made via a subjective al-
gorithm (Dvorak technique) that is applied inconsistently in
different forecast areas. Initial errors are too high, especially
for weak and storms that are transitioning in structure.
In this study, we use Saffir-Simpson Hurricane Wind

Scale (SSHWS) (provided in Table 1) along with intensity
categorization for tropical storm and tropical depression as
tropical cyclone (TC) intensity categories. Since TC intensity
is based on maximum wind speeds (MWS), estimating the

• R. Pradhan and R. Aygun are with The University of Alabama in
Huntsville, AL, USA.
E-mail: ritesh.pradhan@uah.edu, aygunr@uah.edu

• M. Maskey, R. Ramachandran and D. Cecil are with NASA Marshall
SpaceFlight Center.

1.We use tropical cyclone, TC, cyclone, and hurricane interchange-
ably in this paper.

TABLE 1: Saffir-Simpson Hurricane Wind Scale and related
classifications

Category Symbol Wind speeds Damage

Five H5 ≥ 137 knots Catastrophic
Four H4 113− 136 knots Catastrophic
Three H3 96− 112 knots Devastating
Two H2 83− 95 knots Extensive
One H1 64− 82 knots Significant
Tropical storm TS 34− 63 knots Significant
Tropical depression TD 20− 33 knots Small
No Category NC 20 knots -

TC intensity by just using image content is a challenging
problem. Therearea number of techniques that utilize satel-
lite imagery for estimating tropical cyclone intensity using
Dvorak [10], [11] and deviation-angle variance technique
(DAVT) [12]techniques.

Fig. 1: Illustration of common development patterns and their
intensities according to the Dvorak technique [13]

The main assumption of the Dvorak method is that cy-
clones with similar intensity tend to have a similar pattern.
Figure 1 [13] shows some development patterns used by
the Dvorak technique. Once a pattern is detected over a
24-hour period, the features such as length and banding
from the storm are further analyzed to reach a particular T-
number [14]. This relates tropical cloud structures to storm

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works. The final version of record is available at http://dx.doi.org/10.1109/TIP.2017.2766358.

IEEE TRANSACTIONS ON SPECIAL ISSUE ON COMPUTATIONAL IMAGING FOR EARTH SCIENCES, SEPTEMBER 2016 1

Tropical Cyclone Intensity Estimation
Using a Deep Convolutional Neural Network
Ritesh Pradhan, Ramazan Aygun, Senior Member, IEEE, Manil Maskey,Member, IEEE, Rahul

Ramachandran, Senior Member, IEEE, and Daniel Cecil

Abstract—Tropical cyclone intensity estimation is a challenging task as it required domain knowledge while extracting features,

significant pre-processing, various sets of parameters obtained from satellites, and human intervention for analysis. The inconsistency

of results, significant pre-processing of data, complexity of the problem domain, and problems on generalizability are some of the

issues related to intensity estimation. In this study, we design a deep convolutional neural network architecture for categorizing

hurricanes based on intensity using Graphics Processing Unit (GPU). Our model has achieved better accuracy and lower

root-mean-square error by just using satellite images than ’state-of-the-art’ techniques. Visualizations of learned features at various

layers and their deconvolutions are also presented for understanding the learning process.

Index Terms—Deep Learning, Image processing, Convolutional Neural Networks, Tropical Cyclone Category and Intensity Estimation

F

1 INTRODUCTION

D EEP learning uses a deep architecture of multiple
processing layers composed of linear or nonlinear

transformations [1], [2], [3], [4], [5], [6] while replacing
handcrafted features with automated feature learning and
hierarchical feature extraction [7]. Convolutional Neural
Networks (CNNs) can be used to model spatial correlation
with translation invariance making them suitable for image
recognition [8], [9]. This study proposes a deep CNN ar-
chitecture for estimating the hurricane1 intensity by learning
features.

1.1 Motivation

Since hurricanes (or tropical cyclones) possess substantial
threatsand cause significant damage to livesand properties,
studying the stages of a hurricane is important to determine
its impact. From a scientific perspective, determining an
accurate TC intensity helps i) better initialization in forecast
models, leading tomoreaccurate forecasts, ii) moreaccurate
historical records of TCs, especially if a technique can be
consistently applied to older satellite imagery (i.e., intensity
reanalysis), and iii) providing consistent intensity estimates
as current intensity estimates are made via a subjective al-
gorithm (Dvorak technique) that is applied inconsistently in
different forecast areas. Initial errors are too high, especially
for weak and storms that are transitioning in structure.
In this study, we use Saffir-Simpson Hurricane Wind

Scale (SSHWS) (provided in Table 1) along with intensity
categorization for tropical storm and tropical depression as
tropical cyclone (TC) intensity categories. Since TC intensity
is based on maximum wind speeds (MWS), estimating the

• R. Pradhan and R. Aygun are with The University of Alabama in
Huntsville, AL, USA.
E-mail: ritesh.pradhan@uah.edu, aygunr@uah.edu

• M. Maskey, R. Ramachandran and D. Cecil are with NASA Marshall
SpaceFlight Center.

1.We use tropical cyclone, TC, cyclone, and hurricane interchange-
ably in this paper.

TABLE 1: Saffir-Simpson Hurricane Wind Scale and related
classifications

Category Symbol Wind speeds Damage

Five H5 ≥ 137 knots Catastrophic
Four H4 113− 136 knots Catastrophic
Three H3 96− 112 knots Devastating
Two H2 83− 95 knots Extensive
One H1 64− 82 knots Significant
Tropical storm TS 34− 63 knots Significant
Tropical depression TD 20− 33 knots Small
No Category NC 20 knots -

TC intensity by just using image content is a challenging
problem. Therearea number of techniques that utilize satel-
lite imagery for estimating tropical cyclone intensity using
Dvorak [10], [11] and deviation-angle variance technique
(DAVT) [12]techniques.

Fig. 1: Illustration of common development patterns and their
intensities according to the Dvorak technique [13]

The main assumption of the Dvorak method is that cy-
clones with similar intensity tend to have a similar pattern.
Figure 1 [13] shows some development patterns used by
the Dvorak technique. Once a pattern is detected over a
24-hour period, the features such as length and banding
from the storm are further analyzed to reach a particular T-
number [14]. This relates tropical cloud structures to storm

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works. The final version of record is available at http://dx.doi.org/10.1109/TIP.2017.2766358.

IEEE TRANSACTIONS ON SPECIAL ISSUE ON COMPUTATIONAL IMAGING FOR EARTH SCIENCES, SEPTEMBER 2016 4

Fig. 2: Network architecture for hurricane intensity estimation showing different steps of convolution and pooling

TABLE 2:Configuration of our Convolutional Network

Layer Shape Output Size Parameter Shape Parameters

Input 3@232x232

conv1 64@10x10, s=3, p=0 75x75 (64, 3, 10, 10) 19,264

pool1 3x3, s=2, p=0 37x37

conv2 256@5x5, s=1, p=0 33x33 (256, 64, 5, 5) 409,856

pool2 3x3, s=2, p=0 16x16

conv3 288@3x3, s=1, p=1 16x16 (288, 256, 3, 3) 663,840

pool3 2x2, s=1, p=0 15x15

conv4 272@3x3, s=1, p=1 15x15 (272, 288, 3, 3) 705,296

conv5 256@3x3, s=1, p=0 13x13 (256, 272, 3, 3) 528,984

pool5 3x3, s=2, p=0 6x6

fc6 3584 (3584, 9216) 27,872,768

fc7 2048 (2048, 3584) 7,342,080

fc8 8 (8, 2048) 16,392

37,558,480

where L (W) is the stochastic approximation of objective,
f W (X

i) is the loss on data instanceX i , r (W) is the regular-
ization term,and λ is theweight decay for the regularization
term. SGD updates the weights by combining previous
weights and the negative gradient of loss [22].

Vt+ 1 = µVt − ↵r L (Wt) (6)

Wt+ 1 = Wt + Vt+ 1 (7)

In Equation 6, the learning rate (↵) is the weight of the
negative gradient, and the momentum (µ) is the weight of
its previous updatevalue (Vt). In Equation 7,Wt+ 1 is the new
updated weight using thepreviousweight (Wt) and thenew
updated value (Vt+ 1). These hyperparameters are used in
our work as the basis of “Rule of Thumb” [34]. We use ↵ =
0.001 in thebeginning and gradually decrease it by constant
factor of 10 (γ = 0.1). The use of momentum smooths the
weight updates across iterations and makes SGD stable and
faster [25]. We used momentum value as µ = 0.9. As given
in Figure 2, the model computes f W in forward pass and
the gradient r f W in backward pass.

3.2 Optimization

Hyperparameters.Wetend to use larger convolution filter size
for larger input and decrease the filter size gradually for
higher layers. Layers near the input have fewer filters than
that of the higher layers. However, the number of filters
depends on the capacity of the network and the complexity
of the task. In addition toconvolution filters,wealso need to
choose the appropriate size of pooling filters. Large pooling

filter drastically reducestheparameters.While largepooling
filter may lead to a substantial loss in information, suitable
filter size helps to mitigate overfitting. Determining the
shape, size, and number of filters is always challenging. It is
important to use the right level of granularity for thedataset
considering the task complexity.

Regularizations. Regularization is a technique to prevent
overfitting in machine learning by penalizing higher order
features to smooth out the learning curve [22]. In our
experiments, we have used the model obtained at around
90%validation accuracy for early stopping. Then wetest our
test dataset with this model. Sometimes, early stopping [1]
may cause underfitting. Dropout method [2], [35] prevents
overfitting and improves performance. We used a general
dropout of p = 0.5 in our model.

4 EXPERIMENTS

In this section, we explain our dataset, training and testing,
visualization of features, and performance analysis.

4.1 Dataset

Our dataset has two components: i) infrared (IR) hurricane
images and ii) data for hurricanes. We formed our dataset
by i) collecting information from different resources that
have varying sampling rate, ii) fusing data into a single
dataset, iii) interpolating hurricane data for images, and
iv) augmenting additional images by transformations. We
obtained hurricane images from tropical cyclone repository
of the Marine Meteorology Division of U.S. Naval Research

IEEE TRANSACTIONS ON SPECIAL ISSUE ON COMPUTATIONAL IMAGING FOR EARTH SCIENCES, SEPTEMBER 2016 5

TABLE 3: Cyclones used for dataset creation

Region Year Cyclones

Atlantic

1998 Mitch
2003 Isabel
2004 Ivan
2005 Emily, Katrina, Rita, Wilma
2007 Dean, Felix

2010

A lex, Bonnie, Colin, Danielle, Earl, Fiona,
Five, Gaston, Igor, Julia, Karl, Lisa,
Matthew, N ilcole, Otto, Paula, Richard,
Shary, Tomas, Two

2011
Arlene, Bret, Cindy, Don, Emily, Franklin,
Gert, Harvey, Irene, Jose, Katia, Lee,Maria,
Nate, Ophelia, Philippe, Rina, Sean, Ten

2012

A lberto, Beryl, Chris, Debby, Ernesto,
Florence, Gordon, Helene, Isaac, Joyce,
Kirk, Leslie, M ichael, Nadine, Oscar, Patty,
Rafael, Sandy, Tony

2014 Edouard

Pacific

2002 Elida, Fausto, Hernan, Kenna
2005 Jova, Kenneth
2006 Bud, Daniel, Ioke, John, Lane
2007 Flossie
2008 Hernan, Norbert
2009 Felicia, Guillermo, Jimena, Rick
2010 Celia, Darby

2011
Adrian, Dora, Eugene, Hilary, Jova, Ken-
neth

2012 Bud, Emilia, M iriam, Paul

Laboratory (http:/ / www.nrlmry.navy.mil). These satellite
infrared (IR) images are captured around fifteen minutes
apart and have additional information such as year, date,
time and name of the hurricane.
We used HURDAT2 data (http:/ / www.nhc.noaa.gov/

data/ #hurdat) to label images. This hurdat2 is Tropical Cy-

cloneBest Track Reanalysis data2. We also collected a different
recon-only test dataset (http:/ / www.nhc.noaa.gov/ recon.
php) for evaluating our model. This test set was totally
based on the recon-informed hurricane date and time. This
dataset was not used for training.

Cyclones and Images in Dataset. To build a single model
for estimating intensity, we used cyclone images from 68
Atlantic cyclones and 30 Pacific cyclones from 1999 to 2014
(http:/ / www.nrlmry.navy.mil/ tcdat/), which are provided
in Table 3. To avoid the side-effect of unbalanced distri-
bution of TC categories while training our deep CNN, we
tried to balance the distribution by using storms that reach
at least H3 category (there could be some exceptions). We
collected 8,138 images for every 2 hours from 98 cyclones
in Table 3. Since hurdat2 data was available every 6 hours,
we interpolated 6-hour hurdat2 data to obtain maximum
wind speed at every two hours. This provided us labels
(hurricane category) for images every two hours. For val-
idation purposes, we provide a sample image difference
at two hours apart and their Structural Similarity Index
Measure (SSIM 3) and Root Mean Squared Error (RMSE)
values in Figure 3. With the help of best track data, all
imageswereproperly labeled on thebasisof their respective
maximum wind speed using Table 1. Then we applied 5
image transformations (horizontal and vertical flips, and

2. Best track data consist of the positions and intensities during the
life cycle of a tropical cyclone.
3. Structural Similarity Index Measure is the index to measure the

similarity between two images. While SSIM=1 indicates perfect simi-
larity, SSIM=0 indicates no similarity.

Fig. 3: RMSE, SSIM and pixelwise difference plot for images
captured two hours apart. Hurricane Isabel from the Atlantic
region (a) 2003-09-11:14 (138.33 kt) (b) 2003-09-11:16 (141.67 kt)

Fig. 4: Illustration of various transformations used (hurri-
cane IVAN from 2014-09-15). (a) original (b) 90◦ rotation (c)
180◦ rotation (d) 270◦ rotation (e) horizontal flip, and (f) vertical
flip

rotations of 90◦ , 180◦ , and 270◦ as shown in Figure 4) to
increase the number of images to 48,828 images. We used
the same hurricane data of the original image for these
transformed images.Moreoever, separate 2,646 imageswere
collected for testing recon-only dataset.

Pre-processing. First, we cropped unnecessary text from
those images. Then, we formed the maximal square images
by removing the longer region from these rectangular im-
age. After resizing each into a 256x256 image, a 232x232
region is cropped randomly to input to our model.

4.2 Training and Testing

We split our dataset of 48,828 images into training, test
and validation sets mutually exclusive as shown in Table
4. Each transformed image is maintained in the same set
as its original image. In other words, if an original image
goes into the training set, its transformed images are also
assigned to the training set. However, there may be a few
transformed images separated from its original image due
to split ratio (percentage) between these sets. However, this
should not have any major impact on the training aswell as
overall accuracy.
For recon-only test dataset, we used recon-informed

hurricane date, time and speed. We have carefully chosen
instances which have correspondence in our hurdat2 test
set. This helps us use an available untrained image for

INPUT: 232 x 232 pixels OUTPUT: 8 CLASSES

115
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

ESTIMATING TROPICAL CYCLONE INTENSITY
Background: Dvorak technique

Dvorak Technique (1974) Advanced Dvorak Technique- version 9 (2019)

https://doi.org/10.1175/1520-0493(1975)103%3C0420:TCIAAF%3E2.0.CO;2 https://doi.org/10.1175/WAF-D-19-0007.1

116
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

ESTIMATING TROPICAL CYCLONE INTENSITY
CNN Model

IEEE TRANSACTIONS ON SPECIAL ISSUE ON COMPUTATIONAL IMAGING FOR EARTH SCIENCES, SEPTEMBER 2016 4

Fig. 2: Network architecture for hurricane intensity estimation showing different steps of convolution and pooling

TABLE 2:Configuration of our Convolutional Network

Layer Shape Output Size Parameter Shape Parameters

Input 3@232x232

conv1 64@10x10, s=3, p=0 75x75 (64, 3, 10, 10) 19,264

pool1 3x3, s=2, p=0 37x37

conv2 256@5x5, s=1, p=0 33x33 (256, 64, 5, 5) 409,856

pool2 3x3, s=2, p=0 16x16

conv3 288@3x3, s=1, p=1 16x16 (288, 256, 3, 3) 663,840

pool3 2x2, s=1, p=0 15x15

conv4 272@3x3, s=1, p=1 15x15 (272, 288, 3, 3) 705,296

conv5 256@3x3, s=1, p=0 13x13 (256, 272, 3, 3) 528,984

pool5 3x3, s=2, p=0 6x6

fc6 3584 (3584, 9216) 27,872,768

fc7 2048 (2048, 3584) 7,342,080

fc8 8 (8, 2048) 16,392

37,558,480

where L (W) is the stochastic approximation of objective,
f W (X

i) is the loss on data instanceX i , r (W) is the regular-
ization term, and λ is theweight decay for the regularization
term. SGD updates the weights by combining previous
weights and the negative gradient of loss [22].

Vt+ 1 = µVt − ↵r L (Wt) (6)

Wt+ 1 = Wt + Vt+ 1 (7)

In Equation 6, the learning rate (↵) is the weight of the
negative gradient, and the momentum (µ) is the weight of
its previous updatevalue (Vt). In Equation 7,Wt+ 1 is the new
updated weight using thepreviousweight (Wt) and thenew
updated value (Vt+ 1). These hyperparameters are used in
our work as the basis of “Rule of Thumb” [34]. We use ↵ =
0.001 in thebeginning and gradually decrease it by constant
factor of 10 (γ = 0.1). The use of momentum smooths the
weight updates across iterations and makes SGD stable and
faster [25]. We used momentum value as µ = 0.9. As given
in Figure 2, the model computes f W in forward pass and
the gradient r f W in backward pass.

3.2 Optimization

Hyperparameters.Wetend to use larger convolution filter size
for larger input and decrease the filter size gradually for
higher layers. Layers near the input have fewer filters than
that of the higher layers. However, the number of filters
depends on the capacity of the network and the complexity
of the task. In addition to convolution filters,wealso need to
choose the appropriate size of pooling filters. Large pooling

filter drastically reducestheparameters.While largepooling
filter may lead to a substantial loss in information, suitable
filter size helps to mitigate overfitting. Determining the
shape, size, and number of filters is always challenging. It is
important to use the right level of granularity for thedataset
considering the task complexity.

Regularizations. Regularization is a technique to prevent
overfitting in machine learning by penalizing higher order
features to smooth out the learning curve [22]. In our
experiments, we have used the model obtained at around
90% validation accuracy for early stopping. Then wetest our
test dataset with this model. Sometimes, early stopping [1]
may cause underfitting. Dropout method [2], [35] prevents
overfitting and improves performance. We used a general
dropout of p = 0.5 in our model.

4 EXPERIMENTS

In this section, we explain our dataset, training and testing,
visualization of features, and performance analysis.

4.1 Dataset

Our dataset has two components: i) infrared (IR) hurricane
images and ii) data for hurricanes. We formed our dataset
by i) collecting information from different resources that
have varying sampling rate, ii) fusing data into a single
dataset, iii) interpolating hurricane data for images, and
iv) augmenting additional images by transformations. We
obtained hurricane images from tropical cyclone repository
of the Marine Meteorology Division of U.S. Naval Research

117
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

6 STEPS APPROACH
Steps to follow while solving a Machine Learning problem

Data Task Model

LossLearningEvaluation

118
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

DATA

119
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

TASK

NC (No Category , ≤ 20 knots)

TD (Tropical Depression , $20-33$ knots)

TS (Topical Storm , $34-63$ knots)

H1 (Category One , $64-82$ knots)

H2 (Category Two , $83-95$ knots)

H3 (Category Three , $96-112$ knots)

H4 (Category Four , $113-136$ knots)

H5 (Category Five , ≥ 137 knots)

Multi-class Classification.

120
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MODEL 1

Loss Function: Multi-class Cross-Entropy loss functions

Optimizer SGD (Stochastic Gradient Descent)

Training and Evaluation: Training Set 72 % , Test Set, 8 %, Validation Set 10%

121
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

SUMMARY OF APPROACH

122
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PREPROCESSING DATA

Pre-Processing Data:

Step 1 : Resize Image from (1024, 1024 ,3) to (256 , 256 ,3)

Step 2 : Choose a random (232 , 232 , 3) patch from the (256 , 256 , 3) and feed into our model.

There are different types of Resizing:

• cv2.INTER_AREA (Preferable for Shrinking)

• cv2.INTER_CUBIC (Preferable for Zooming but slow)

• cv2.INTER_LINEAR (Preferable for Zooming and the default option)

123
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

LAUNCH TROPICAL CYCLONE NOTEBOOK
1:00-2:00 ET

Step through the notebook on your own (shift + enter on each cell)

Shutdown the kernel before clicking on “Next Notebook” to free up the GPU memory

124
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

TROPICAL CYCLONE COMPETITION
Can you make a better prediction?

Go to last notebook in the TC section

See if you can improve the accuracy.

Suggestions:
• Improve the data balance
• Tweak the model hyperparamters
• Try different optimizers

Bug in the lab: when doing the test/train split on time-series data, the data should not be shuffled!

• Try maximizing validation accuracy on both shuffled and un-shuffled validation sets

125
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

STEADY STATE FLOW WITH NEURAL NETWORKS
Flow fields are simulated using computational fluid dynamics (CFD) solvers

• CFD simulation is usually a computationally expensive,
memory demanding and time-consuming iterative
process

• CFD limit opportunities for design space exploration
and forbid interactive design

126
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

STEADY STATE FLOW WITH NEURAL NETWORKS

Our aim is to predict 2D flow around objects. The input is the boundary around which we want to
calculate the flow. Here is an example of input data and the corresponding flow that was calculated

using the Lattice Boltzmann method. (Mechsys).

http://mechsys.nongnu.org/

127
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

6 STEPS APPROACH

Data Task Model

LossLearningEvaluation

Steps to follow while solving a Machine Learning problem

128
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

DATA AND TASK

Predict the velocity vectors of both the 𝑥 and 𝑦 channels from our model.

predict the velocity vectors of both the 𝑥x and 𝑦y channels from our model.

129
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MODEL

We will be building the following Models and benchmarking them as we proceed :

• Simple Fully Connected Networks

3 Layer Network

5 Layer Network

• Convolution Neural Networks

Binary Boundary

Signed Distance Function

• Advanced Networks

Gated Residual Network

Non-Gated Residual Network

130
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

SUMMARY OF APPROACH

131
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

U GATED NETWORK

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

AI FOR SCIENCE
BOOTCAMP USING SIMNET

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

133
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OUTLINE

• Introduction to Physics Informed Neural Networks (PINN)

• Solving Partial Differential Equation system using SimNet toolkit

• Solving parameterized PDEs

• Solving transient problems

• Solving inverse problems

• Challenge CFD problem – Flow over a 2D chip

Challenge CFD problem for Flow over a 2D Chip

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

134
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

DATA DRIVEN METHODS

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

135
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

NEURAL NETWORK SOLVER THEORY

Goal: Train a neural network to satisfy the boundary conditions and differential equations by constructing an
appropriate loss function

• Consider an example problem:

• We construct a neural network 𝑢𝑛𝑒𝑡 𝑥 which has a single value input 𝑥 ∈ ℝ and single value output 𝑢𝑛𝑒𝑡 𝑥 ∈ ℝ.

• We assume the neural network is infinitely differentiable 𝑢𝑛𝑒𝑡 ∈ 𝐶∞ - Use activation functions that are infinitely
differentiable

𝐏: ൞
𝛿2𝑢

𝛿𝑥2
𝑥 = 𝑓(𝑥)

𝑢 0 = 𝑢 1 = 0

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

136
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

NEURAL NETWORK SOLVER THEORY

• Construct the loss function. We can compute the second order derivatives
𝛿2𝑢𝑛𝑒𝑡

𝛿𝑥2
𝑥 using Automatic

differentiation

• Where 𝑥𝑖 are a batch of points in the interior 𝑥𝑖 ∈ 0, 1 . Total loss becomes 𝐿 = 𝐿𝐵𝐶 + 𝐿𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙

• Minimize the loss using optimizers like Adam

𝐿𝐵𝐶 = 𝑢𝑛𝑒𝑡 0
2 + 𝑢𝑛𝑒𝑡 1

2

𝐿𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = න
0

1 𝛿2𝑢𝑛𝑒𝑡
𝛿𝑥2

𝑥 − 𝑓 𝑥

2

𝑑𝑥 ≈ න
0

1

𝑑𝑥
1

𝑁
෍

𝑖=0

𝑁
𝛿2𝑢𝑛𝑒𝑡
𝛿𝑥2

𝑥𝑖 − 𝑓 𝑥𝑖

2

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

137
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

NEURAL NETWORK SOLVER THEORY

• For 𝑓 𝑥 = 1, the true solution is
1

2
𝑥 − 1 𝑥. After sufficient training we have,

Comparison of the solution predicted by Neural
Network with the analytical solution

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

138
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

SOLVING PARAMETERIZED PROBLEMS

• Consider the parameterized version of the same problem as before. Suppose we want to determine how the solution
changes as we move the position on the boundary condition 𝑢 𝑙 = 0

• Parameterize the position by variable 𝑙 ∈ 1, 2 and the problem now becomes:

• This time, we construct a neural network 𝑢𝑛𝑒𝑡 𝑥, 𝑙 which has 𝑥 and 𝑙 as input and single value output 𝑢𝑛𝑒𝑡 𝑥, 𝑙 ∈ ℝ.

• The losses become

𝐏: ൞
𝛿2𝑢

𝛿𝑥2
𝑥 = 𝑓(𝑥)

𝑢 0 = 𝑢 𝑙 = 0

𝐿𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = න
1

2

න
0

1 𝛿2𝑢𝑛𝑒𝑡
𝛿𝑥2

𝑥 − 𝑓 𝑥

2

𝑑𝑥𝑑𝑙 ≈ න
1

2

න
0

1

𝑑𝑥 𝑑𝑙
1

𝑁
෍

𝑖=0

𝑁
𝛿2𝑢𝑛𝑒𝑡
𝛿𝑥2

𝑥𝑖 , 𝑙𝑖 − 𝑓 𝑥𝑖

2

𝐿𝐵𝐶 = න
1

2

𝑢𝑛𝑒𝑡 0, 𝑙
2
+ 𝑢𝑛𝑒𝑡 𝑙, 𝑙

2
𝑑𝑙 ≈ න

1

2

𝑑𝑙
1

𝑁
෍

𝑖=0

𝑁

𝑢𝑛𝑒𝑡(0, 𝑙𝑖)
2 + 𝑢𝑛𝑒𝑡(𝑙𝑖 , 𝑙𝑖)

2

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

139
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

SOLVING PARAMETERIZED PROBLEMS

• For 𝑓 𝑥 = 1, for different values of 𝑙 we have different solutions

Solution to the parametric problem
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

140
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

SOLVING INVERSE PROBLEMS

• For inverse problems, we start with a set of observations and then calculate the causal factors that produced them

• For example, suppose we are given the solution 𝑢𝑡𝑟𝑢𝑒(𝑥) at 100 random points between 0 and 1 and we want to
determine the 𝑓 𝑥 that is causing it

• Train two networks 𝑢𝑛𝑒𝑡 𝑥 and 𝑓𝑛𝑒𝑡(𝑥) to approximate 𝑢 𝑥 and 𝑓(𝑥)

𝐿𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 ≈ න
0

1

𝑑𝑥
1

𝑁
෍

𝑖=0

𝑁
𝛿2𝑢𝑛𝑒𝑡
𝛿𝑥2

𝑥𝑖 − 𝑓 𝑥𝑖

2

𝐿𝐷𝑎𝑡𝑎 =
1

100
෍

𝑖=0

100

𝑢𝑛𝑒𝑡 𝑥𝑖 − 𝑢𝑡𝑟𝑢𝑒 𝑥𝑖
2

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

141
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

SOLVING INVERSE PROBLEMS

• For 𝑢𝑡𝑟𝑢𝑒 𝑥 =
1

48
8𝑥 −1 + 𝑥2 −

3 sin 4𝜋𝑥

𝜋2
the solution for 𝑓(𝑥) is 𝑥 + sin(4𝜋𝑥)

Comparison of the true solution for 𝑓 𝑥 and the
𝑓𝑛𝑒𝑡(𝑥) inverted out

Comparison of 𝑢𝑛𝑒𝑡(𝑥) and train points from 𝑢𝑡𝑟𝑢𝑒

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

142
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

SOLUTION TO PDES- 1D DIFFUSION

• Composite bar with material of conductivity 𝐷1 = 10 for 𝑥 ∈ (0,1) and 𝐷2 = 0.1 for 𝑥 ∈ (1,2). Point A and C are
maintained at temperatures of 0 and 100 respectively

• Equations: Diffusion equation in 1D

• Flux and field continuity at interface (𝑥 = 1)

𝑑

𝑑𝑥
𝐷1

𝑑𝑈1

𝑑𝑥
= 0 When 0 < 𝑥 < 1

𝑑

𝑑𝑥
𝐷2

𝑑𝑈2

𝑑𝑥
= 0 When 1 < 𝑥 < 2

𝐷1
𝑑𝑈1
𝑑𝑥

= 𝐷2
𝑑𝑈2
𝑑𝑥

𝑈1 = 𝑈2

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

143
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

SOLUTION TO PDES- 1D DIFFUSION

• Define the problem and train the neural network to obtain the temperature distribution in the bar

• Compare the results with analytical solution

x

Te
m

p
e
ra

tu
re

Training error Validation error

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

144
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

SOLUTION TO PARAMETERIZED PDES- 1D DIFFUSION

• Composite bar with material of conductivity 𝐷1 for 𝑥 ∈ (0,1) and 𝐷2 = 0.1 for 𝑥 ∈ (1,2).

• Solve the problem for multiple values of 𝐷1 in the range 5, 25 in a single training

• Same boundary and interface conditions as before

Training error Validation error for 𝐷1 = 10
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

145
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

SOLUTION TO ODES- COUPLED SPRING MASS SYSTEM

• Three masses connected by four springs

• System’s equations (ordinary differential equations):

• For given values masses, spring constants and boundary conditions

𝑚1𝑥1
′′ 𝑡 = −𝑘1𝑥1 𝑡 + 𝑘2 𝑥2 𝑡 − 𝑥1 𝑡

𝑚2𝑥2
′′ 𝑡 = −𝑘2 𝑥2 𝑡 − 𝑥1 𝑡 + 𝑘3 𝑥3 𝑡 − 𝑥2 𝑡

𝑚3𝑥3
′′ 𝑡 = −𝑘3 𝑥3 𝑡 − 𝑥2 𝑡 − 𝑘4𝑥3 𝑡

𝑚1, 𝑚2, 𝑚3 = 1, 1, 1

𝑘1, 𝑘2, 𝑘3, 𝑘4 = 2, 1, 1, 2

𝑥1(0), 𝑥2(0), 𝑥3(0) = 1, 0, 0

𝑥1
′(0), 𝑥2

′ (0), 𝑥3
′ (0) = 0, 0, 0

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

146
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

SOLUTION TO ODES- COUPLED SPRING MASS SYSTEM

• Define the transient problem for time, 𝑡 = (0, 10) and train the neural network to obtain the displacement of each
mass

• Compare the results with analytical solution

D
is

p
la

c
e
m

e
n
t

tValidation error for each mass

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

147
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

INVERSE PROBLEMS- COUPLED SPRING MASS SYSTEM

• For the same system, assume we know the analytical solution which is given by:

• With the above data and the values for 𝑚2, 𝑚3, 𝑘1, 𝑘2, 𝑘3 same as before, use the neural network to find the values of
𝑚1 and 𝑘4

𝑥1 𝑡 =
1

6
cos 𝑡 +

1

2
cos 3𝑡 +

1

3
cos 2𝑡 , 𝑥2 𝑡 =

2

6
cos 𝑡 −

1

3
cos 2𝑡 , 𝑥3 𝑡 =

1

6
cos 𝑡 −

1

2
cos 3𝑡 +

1

3
cos(2𝑡)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

148
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CHALLENGE: FLOW OVER 2D CHIP

• Solve the flow over 2D chip for the given boundary conditions. The challenge problem has 3 parts:

1. Solve the fluid flow for the given boundary conditions and geometry

2. Solve the fluid flow for the parameterized Chip geometry

3. Solve the inverse problem where, given a flow field, use it to invert out the viscosity of the flow

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

149
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CHALLENGE: FLOW OVER 2D CHIP

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

150
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CHALLENGE: FLOW OVER 2D CHIP- HINTS AND TIPS

• Use Signed Distance Function to weight the equation losses inside domain for faster convergence (User Guide
Section 2.3.2)

• Use Integral Continuity for faster convergence (User Guide Section 8.3.1 and 8.3.2)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

151
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

SIMNET FEATURES AND ADVANCEMENTS

Physics types:
• Linear Elasticity (plane stress, plane strain and 3D)
• Fluid Mechanics
• Heat Transfer
• Coupled Fluid-Thermal
• Electromagnetics
• 2D wave propagation

Solution of differential equations:
• Ordinary Differential Equations
• Partial Differential Equations
• Differential (strong) Form
• Integral (weak) form of the PDEs

Linear Elasticity

Electromagnetics

Conjugate Heat Transfer

Wave PropagationTaylor-Green vortex decay

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

152
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

SIMNET FEATURES AND ADVANCEMENTS

Several neural network architectures:
• Fully connected Network
• Fourier Feature Network
• Sinusoidal Representation Network (SiReN)
• Modified Fourier Network
• Deep Galerkin Method Network
• Modified Highway Network
• Multiplicative Filter Networks

Other Features include:
• Global and local learning rate annealing
• Global adaptive activation functions
• Halton sequences for low-discrepancy

point cloud creation
• Gradient Accumulation
• Time-stepping schemes for transient

problems
• Temporal loss weighting and time marching

for the continuous time approach
• Importance sampling
• Homoscedastic task uncertainty

quantification for loss weighting

Comparisons of various networks
in SimNet applied to solve the
flow over a heatsink

Handling larger batch sizes using Multi-
GPU and/or Gradient Aggregation

Importance sampling
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

153
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

SIMNET FEATURES AND ADVANCEMENTS

• APIs to automatically generate point clouds from Boolean compositions of geometry primitives or import point cloud
for complex geometry (e.g., STL files)

• Parameterized system representation that solves several configurations concurrently for analytical geometry
using SimNet CSG module

• Transfer learning for efficient surrogate-based parameterization of STL and constructive solid geometries

• Polynomial Chaos Expansion method for assessing how uncertainties in a model input manifest in its output

Geometry parameterization using SimNet’s CSG moduleSTL geometry and Transfer Learning

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

154
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

SIMNET FEATURES AND ADVANCEMENTS

Improved performance with XLA enabled for TensorFlow models and multi-GPU/multi-Node runs
• Accelerated Linear Algebra (XLA)
• Strong scaling with learning rate adjustments

Improved stability in multi-GPU/multi-Node implementations using linear-exponential learning rate and utilization of TF32 precision
for A100 GPUs

Strong Scaling- Speedup and Scaling EfficiencyAccelerated training using TF32 on A100 GPUs

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

Thanks!

