Analysis of Utterance Embeddings and Clustering Methods Related to Intent Induction for Task-Oriented Dialogue

Jeiyoon Park¹, Yoonna Jang¹, Chanhee Lee² Heuiseok Lim^{1*}

¹Department of Computer Science and Engineering, Korea University, ²Naver Corporation

Overview

• Why Intent Induction?

- With the skyrocketing demand for conversational AI, the more user utterances a dialogue system encounters, the more unknown intents it does.
- Predefining user intent is expensive and it is impossible to annotate all the user intents.

Our Approach

- Previous studies did not conduct an in-depth analysis of the application of existing models to intent induction that might cause performance degradation problems
- We postulate there are two salient factors for automatic induction of intents: (1) <u>clustering</u> <u>algorithm for intent labeling</u> and (2) <u>user utterance</u> <u>embedding space</u>
- We analyze how the two key factors affect to user intent clustering and intent induction.

Contribution

- We demonstrate that the combined selection of utterance embedding and clustering method in the intent induction task should be carefully considered.
- We present that pretrained MiniLM with Agglomerative clustering shows significant improvement in NMI, ARI, F1, accuracy and example coverage in intent induction tasks.
- We find that there is a trade-off relationship between NMI, ARI and Example coverage.

Task 1: Intent Clustering

• Result Analysis (Embedding)

- m denotes multilingual model, u stands for unsupervised model, and + means large model.

Clustering Method K-means Clustering								
Metric	NMI	ARI	ACC	Precision	Recall	F1	Example Coverage	#K
$EASE^m_{ROBERTA}$	33.4	14.2	28.0	28.0	69.0	39.9	43.9	5
$EASE_{BERT}$	36.1	18.1	35.3	36.8	58.9	45.3	53.5	8
$EASE^m_{BERT}$	38.4	10.9	23.6	42.7	24.2	30.9	87.6	44
$EASE_{ROBERTA}$	45.8	25.4	40.0	43.7	60.7	50.9	65.6	12
$DiffCSE^{trans}_{BERT}$	43.8	15.5	29.4	49.5	30.6	37.8	90.1	40
$DiffCSE^{sts}_{BERT}$	46.6	16.9	29.9	50.4	30.8	38.2	89.9	43
$DiffCSE^{sts}_{ROBERTA}$	53.9	29.0	45.1	57.2	46.8	51.5	91.1	30
$DiffCSE^{trans}_{ROBERTA}$	55.0	23.1	35.7	60.6	35.7	44.9	96.7	50
$SimCSE^u_{BERT}$	31.7	13.3	27.9	27.9	65.0	39.0	43.9	5
$SimCSE^u_{BERT+}$	47.0	25.7	38.4	46.9	46.9	46.9	76.8	19
$SimCSE^u_{ROBERTA}$	51.2	29.0	44.4	49.7	61.6	55.0	70.5	14
$SimCSE_{BERT+}$	53.0	27.8	39.8	55.0	42.2	47.8	91.0	31
$SimCSE_{BERT}$	53.1	24.4	39.0	60.5	39.5	47.8	96.3	44
$SimCSE^u_{ROBERTA+}$	53.2	25.9	42.2	56.8	43.8	49.5	91.7	32
$SimCSE_{ROBERTA}$	56.6	28.8	42.7	60.8	43.3	50.6	91.3	36
$SimCSE_{ROBERTA+}$	56.8	28.9	41.3	62.5	41.6	49.9	98.4	42
Glove ^{avg}	30.5	7.0	20.6	34.6	22.2	27.0	92.2	50
MPNet	59.3	32.3	46.1	66.0	47.1	54.9	96.5	42
$MiniLM_{L6}$	59.3	35.7	52.6	62.2	54.9	58.4	92.4	28
$MiniLM_{MULTIQA}$	61.7	38.2	55.1	66.6	55.4	60.5	98.8	30
$MiniLM_{L12}$	63.1	38.9	54.9	68.0	54.9	60.8	100.0	31

- The number of parameters. Both DiffCSE and SimCSE denote RoBERTa_{base} model

Method	DiffCSE	SimCSE	MPNet	MiniLM
# Param	250M	125M	110M	21.3M

These results demonstrate that (i) performance increases as the number of parameter decreases, which means excessively large embedding model leads to performance degradation, and (ii) the use of a student network which is trained by the teacher's self-attention distributions and guiding layer improves intent clustering performance

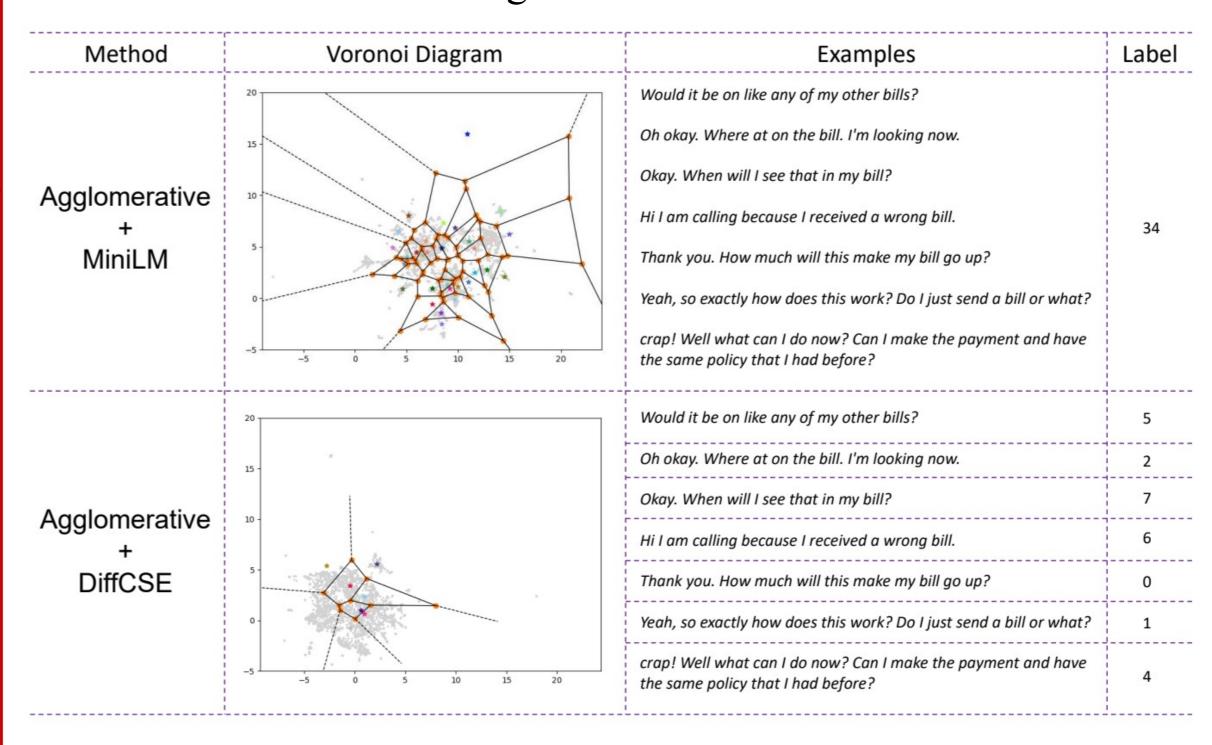
Task 2: Intent Induction

• Result Analysis (Clustering Algorithm)

Utterance Embedding	nce Embedding MiniLM _{MULTIQA}							
Metric	NMI	ARI	ACC	Precision	Recall	F1	Example Coverage	#K
Bisect K-means	72.3	55.7	57.4	63.0	81.2	70.9	76.8	27
VOT	75.3	50.6	60.0	71.9	72.3	72.1	93.4	33
Spectral	75.0	51.7	59.0	67.7	75.9	71.6	86.3	23
\overline{K} -means	77.4	54.5	63.2	70.5	79.1	74.6	80.0	24
BIRCH	<u>79.5</u>	<u>62.8</u>	68.1	<u>71.9</u>	84.6	<u>77.7</u>	<u>89.9</u>	24
Agglomerative	81.0	64.2	<u>66.5</u>	75.5	80.6	78.0	86.2	25

Qualitative Result

- Agglomerative clustering on DiffCSE utterance embedding is not able to discern user intent well and amalgamate completely different user utterances into a single intent cluster.



Quantitative Result: A Trade-off Relationship

